
Journal of Statistical Physics, VoL 48, Nos. 3/4, 1987 

Two-Dimensional Field Theories Close to Criticality 

H. Saleur 1 and C. I tzykson 1 

Received January 30, 1987 

Using techniques developed in the context of conformal invariant two-dimen- 
sional field theories, we present some examples of finite-size-effect calculations in 
the vicinity of the critical point perturbed by relevant operators. 
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1. I N T R O D U C T I O N  

Applications of conformal invariance, i.e., local scale invariance, to two- 
dimensional statistical physics have already been numerous and delt mostly 
with properties at the critical point. It is a natural idea to try to exploit 
some of the new techniques that have been developed in this context to 
study the vicinity of the critical point, where continuous field theory 
applies. This can be called the critical domain. Although there has been a 
lot of work of this kind, mostly in the case of integrable models, we know 
of only two recent attempts using the machinery of conformal invariance. 
One is by Cardy, ~1~ who studies the logarithmic corrections to finite-size 
scaling due to marginally irrelevant operators, and the other by 
Zamolodchikov, (2) who generalizes the short-distance algebra to the 
situation where the trace of the energy-momentum tensor does not vanish 
and a new scale is present. 

Our goal is to present a few calculations and examples of what is to be 
naturally expected. Due to the appearance of a length scale, it is tempting 
to relate it to a particular geometry. The simplest one obtained from 
periodic boundary conditions leads to a torus and has been very useful in 
previous studies. It provides, furthermore, the constraint of modular 
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invariance, the latter being by no means restricted to massless field 
theories. Even though this may not be as powerful in the general case, it 
still allows useful checks. Moreover, any theory in a finite box delivers us 
from infrared singularities if one attempts to develop a perturbation theory 
around criticality. 

The deviations from criticality can be interpreted as additions to the 
Hamiltonian of terms coupled to relevant operators, i.e., of dimension less 
than or equal to two. Those lead in particular to an ultraviolet finite 
perturbation theory, a second fortunate circumstance, which is further 
enhanced by the fact that the latter is most likely a convergent one. 

Turning our attention to the observables, one may inquire which are 
those of greatest interest. A conflicting demand is to allow for "easy" com- 
putation. We find it convenient in a first approach to study the partition 
function (on the torus) and its deformation as a function of the sources 
coupled to the relevant operators (for instance, deviation in temperature 
from Tc or analogs of a magnetic field). As is well known, this partition 
function at T~. codes for the set of critical indices as well as the central 
charge. It is therefore no surprise to see this structure evolve in such a way 
that we get quantities generalizing the central charge and critical indices 
becoming functions of the coupling parameters (the sources) and the length 
scale. 

The paper opens with a section on free fields, where we compute the 
partition function for twisted boundary conditions in the presence of a 
mass term. This computation is similar to the massless case and results in 
Eq. (2.23). In Section 3 we apply our previous result to the Ising model 
(free massive fermions) and we recover expressions obtained nearly two 
decades ago by Ferdinand and Fisher (3> [Eq. (3.3)]. Modular invariance is 
a consequence of the derivation, but is explicit in the expansion of the free 
energy in inverse powers of the correlation length (proportional to T -  T~.). 
Moreover, this a convergent expansion with a finite radius of convergence 
limited by the nearest singularity in the complex T plane (a zero of the par- 
tition function in the appropriate scale). An analysis of the formula suports 
the expectations. One obtains in closed form the scale-dependent central 
charge, and other dimensions. More interesting, a splitting appears 
between order and disorder operators, also as expected. Finally, the 
additive (ultraviolet) renormalization of the specific heat is observed. 

Unfortunately, it is not known how to extend these analytic results to 
other cases. One is therefore led to study a perturbation expansion that 
relies on the knowledge of critical correlation functions in the infinite plane. 
The latter are in principle known. After presenting the general formalism, 
we restrict our attention to specific calculations in the Ising case. We 
recover some of the results of Section 2 by resumming the perturbation 
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series for a thermal perturbation. We present computations up to fourth 
order in the magnetic field [Eqs. (4.14), (4.29)]. There are no obstacles in 
principle to continuing further except that the expressions would become 
extremely cumbersome. We are able to check these expressions against a 
number of data, including previous studies of finite-size effects for the ratio 
( M 4 ) / ( M ~ )  2 (M is the magnetization) in a periodic strip at criticality. 
The agreement is quite satisfactory. It would of course be most interesting 
to obtain a complete expression for the effective central charge, say, and see 
its evolution toward the Lee-Yang edge singularity in imaginary magnetic 
field, which gives the finite radius of convergence of the perturbative series 
in this case. 

It is a challenge to find efficient methods (possibly nonperturbative) to 
perform similar calculations in the Ising and other models. But even 
accepting this limitation, our examples show that at least perturbative 
techniques work quite well and ought to be applied to more instances. 

More generally and speculating even further, it has already been 
observed that there is a close connection between integrable two-dimen- 
sional models and the ones described by a finite number of primary fields 
at criticality. This connection remains very mysterious and leads to several 
questions: for instance, where is the Yang-Baxter algebra hidden and what 
are the relations between the statistical weights of integrable models and 
various partitions functions constructed at criticality which seem to use 
very similar ingredients? One may hope, perhaps a bit naively, that pursuit 
of the study away from T,. might shed some light on these questions if one 
attempts, for instance, to evaluate the S-matrix scattering elements. Related 
to this problem is the one of understanding the link between systems of 
equations for Green's functions at Te derived from the short-distance 
algebra and the corresponding Painlev6 systems which govern in the best 
of all cases the same correlations off To. We hope to return to these 
questions in the future. 

2. FREE FIELDS. KRONECKER'S  F O R M U L A  

1. We derive in this section the partition function of a free, massive 
field subjected to twisted boundary conditions on a torus Y. In the 
Euclidean plane the torus is thought of as a quotient by the lattice 
generated by two periods co 1 and 002. We use a complex notation and 
assume an orientation such that the ratio 

T, = 0 0 2 / 0 9 1  (2.1) 
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has a positive imaginary part. We introduce complex fields q}(x) satisfying 
(k, l, N integers, 0 ~< k, l < N) 

(p(x + n, ml + n2co2) = exp ( 2irc lnl N-kn2) q}(x ) (2.2) 

(where of course q} is a function of x and ~?). Over such complex fields we 
want to give a meaning to (i.e., renormalize) the partition function written 
as a functional integral 

1 
= FI En,n 2 (2.3) 

n [ ,n 2 

The product is over the eigenvalues E,ln2 of the operator - z l  + m 2 subject 
to the periodicity conditions (2.2), i.e., 

Enln2 = - -  hi - I -  ~ O1-t- n2-k- + m  2, nl,n2eZ (2.4) 

A = area of T = ](o 112 Im 

and is only formal. To give a precise (renormalized) definition, one 
introduces the function 

1 
G{s)= ~ (En,n2)" (2.5) 

ttl,n2 

at first analytic for Re s >  1, but which admits a meromorphic con- 
tinuation, analytic as it turns out at s = 0. Thus we set 

Dk/N,~/N(3F; m) = exp -�89 

To perform the calculation, we introduce the notations 

I{oll 
t = m - -  

2r~ 

(2.6) 

(2.7} 

( A I m  r y  
G(s)= \ ~ /  g(s) 

1 
g(s) 

# { IF/1 "t- k/N•- (n 2 -1- l/N) Re r]2 + I m  T21-(n2 + l/N) 2 + t 2] }" 

(2.8) 

(2.9) 
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in such a way that 

1 g'(0)] Dk/N,I/N-= e x p - [ ~  g(0) In A I m  ~ 1 --s + ~ (2.1o) 

2. In order to evaluate (and analytically continue) g(s), we 
follow closely the procedure of Ref. 4, very much as we did it in the 
massless case. (5) 

In (2.9) the sum over the integer n~ defines a periodic function 
(period l)  in the variable kiN+ (n 2 + l/N)Re z. One then writes its expan- 
sion in Fourier series. Set 

a=k/N+(n2+l /N)  Rer, b=lmr[(n2+l/N)2+t2]I/2>O (2.11) 

Then 
1 

~ [ ( n l  + a) 2 + b~] ~ 

= ~exp(2iT~nla ) dyexp(-2i~nly)  ., -~  (y2 + b2)~' 

fo 1 ~dUu, dyexp[_u(y2+b2)_2i~nly  ] = Z exp(2hznl a) F--~ u 
//I oo 

- F(s) ~ exp(2i~nl a) --u u"- ~/2 exp - ub a + 

We rescale the integration variable and split off the contribution of the 
term n~ = 0, with the result that (~5, means sum over all n except 0) 

1 
~ [ ( . ,  + a) 2 + b2] ~ 

- F(s) ( - ~  q- 2'exp(2izmla) 
nl  

x e x p [ - ~  rnlr b(v+ l /v)]  
7) 

1/2 

(2.12) 

We now reinstate the values for a and b given by (2.11 ) and sum over n2 to 
get g(s). The second term in (2.12) is readily evaluated. Taking the limit 
s ~ 0 in the integral and using the fact that 

( )1j2 f0 ~dL1 v+_l/2e-2.(v+ I/v)= e-2~ (2.13) 
/9 
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g ( s ) = - ~ F  s -  Imv'  ~[(n+l/N)2+t2]s 112 

- 2 s l n  [ l  (1 - exp {2iz I k  + ( - ~ )  Re z ] 

- 2 ~ m ~ k t - - y -  ) +,~ + 0 ( ,  2) 

(2.14) 

then we have to treat with some care the first term in (2.14), depending on 
I/N only, which we write as 

g,/N(S)=-F--~F~s-- Imv 1- ,, [(rl+l/N)2+12]s_l/2 (2.15) 

Two cases are to be distinguished. If l/N = 0 

lm z'-2" I -2"F(s- 1/2) 2V(s- 1/2) ( (2s -  1) 
go(s) = V(s) ? ~1/2 + ~1/2 

2F(s + 1/2) ff(2s + 1 ) t 2 
re1/2 

2F(s + 3/2) t 4 fs + ~/2 dX(1 - ,~) ~ 1 7 
n = 1 ( n 2  q- "~t2)3/2~ 

Taking into account that 

~ ( - 1 ) =  -1/12, ~(1 + 2s)= 1/2s(1 +2sy + ,--) 

F(s+l/Z)=x/~ [ 1 - s ( 7 + 2 1 n 2 ) +  ---] 

F(-1/2)-~ -2 , , f~ ,  1/F(s)=s(1 +7s+  ...) 

were 7 is Euler's constant, we find 

go(S)=zImz {- te  +s I~-2 t+  2t21n(2Imze-~) 

+ t 4 cl,~ ~ (ld-+-jT)3/2 + O(s 2) 
n=l 

(2.16) 
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Similarly, 

~,t/N(s)=Trlm~-2s[F(s-1/2)V 1 
zc ~ In + l/NJ z s -  

t 2 F ( s  + 1/2) 1 
rc I/2 ~ In+l/N( 2"+1 

F(s+ 3/2) t4 ;o d2 ~ 1 - 2  } 
+ ~/~ [(~ + l / ~ r - - ~ ; t g  "+~/~ (2.17) 

Except for the middle term, the limit s-~ 0 is easily taken, since the first 
and last terms in the bracket have finite limits as s ~ 0. In particular, 

F(s - 1/2) V 1 1 e 2i~'~/lv 
lim - -  - ,~o rc in ~,, in+l/N[Z,,-l=-~5 2 n 2 

/ l  

7l 2 

Thus, 

gl/N(s) = ~z Im z s 1 N2 

t 4 1 l - - ) ~  

+ 2 fo d2 ~,~ [(n + l/-N~-+ 2t2]gn} 

_~lmzt2Imz-Z'F(s+l/2)~, ,  1 
ninF(s) In+l/N] z'+l kO(s2) 

Consider now 

(2.18) 

F(s + 1/2) 1 
~l/~V(s) ~ In+ l/NI 2s+ ' 

F(s+l/2)[  ( /  ) ( / l + 2 s ) ]  
- -  7.cl /2/~(S ) H ; l + 2 s  + H  l - F ;  (2.19) 

where 

t t(x,  ~) : (x + n) ~ 
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If o-~ 1, 
1 

H(x, ~r) ~- + c~(x) + . .-  (2.20) 

where ~ has to be determined. One has 

0-7 H(x, o)= -oH(x,  o + 1) 

02H(x, 0") 

Ox 0o 
- H ( x , o + l ) - o ~ H ( x , a + l )  

Let o. --+ 0; then 
O2H(x, ~r) 

0x 0o. 
- ~ ( x ) +  . . .  

and since one has 
V(x) 

~-~H(x, o) ~=o=ln  (2~)1/------ ~ 

(Lerch formula(4/), we get 

~(x) = - ~ ( x )  (2.21) 

where ~ is the logarithmic derivative of Euler's gamma function. Thus, 
finally, 

{ L3( '2uN(s) = ~ Im t - t 2 + S 1 N2 

+ t2 I2  In Im t + ~9 ( / )  + ~ (1 - - / )  + 2 log 2 ] 

t 4 1 1 - - ) ~  

Collecting our results, we obtain 

(2.22) 

O k/N,i/N(~ , m)= exp(- re  Im "[~ I/N) 

+,1'?) (2.23) 
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where 

~ o = ~ - -  t +  t21n 4ue -~ 

t 4 f~ 1 
+~-  d2(1-2) ~ (r12+j, t2)3/2 

n ~ l  

~I/N(I/N~O)=~[ 1 

+ t 2 

t 4 +-~ 

In particular,  

6l( NN 2- l! l 

(1 
1 l 

fO dfi~(1-/~)En[(l'l~-l/N)2 "1- , ~ 1 2 ]  3/2 

Yx/2 = - ~ - ~ +  t 2 In 

f4 f~ +oo l 
+2 a,~(1--,~) • [(n+l/2)~+Xt233/~ t z = 0  

We note  that Y~/N-Yo is a function of t only. 

3. As a first applicat ion of the above resulrs, we investigate the par- 
tition function of a scalar, periodic, real field off-criticality, i.e., at m # 0. 
F rom (2.3) it is given by 

1 
Z s c a l a r  - -  Doo 

= e x p  rc Im r - - t + t 2 1 n  41r e x p ( - 7 )  

t 4 ~.1 1 "~ 
+~Jo d~(1-x)~ (~2+it2)3/2 J 

x H {1 -- exp[2i~zn Rez-2~Imv(n2+t2)~/z]}  -I (2.24) 
n 

The infinite product  is of course real and positive, so no absolute value sign 
is necessary. We recall that t = m [co~[/2rc is assumed to be positive in this 
expression. 
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The interpretation of the formula is clear. From the derivation, it is a 
modular invariant, even though it is expressed using variables adapted to a 
specific basis. In particular, t is a dimensionless measure of the departure 
from criticality defined in terms of specific period. One can interpret the 
prefactor as exp 7c/6 Im z C(t, Im z), where C(0, Im z) = 1 as a varying or 
scale-dependent "central charge." The appearance of a In Im r dependence 
of the t 2 coefficient reflects the necessity of an ultraviolet renormalization of 
the "specific heat," i.e., the second derivative of In Z with respect to m. The 
infinite product in the denominator could have been easily predicted in 
a transfer-matrix formalism by decomposing the field in proper modes. 
The discrete momenta 2rcn/Io)ll are associated to eigenfrequencies 
[(2rcn/Iooll)~+m2] ~/2, which is what is indicated in (2.24). By extracting 
the contribution of the zero mode responsible for a potential divergence, 
one easily recovers the massless result 

lim m ~ Z(m) = 1 (2.25) 
~- ,o  ( I ra t )  1/2 r / ( t )  f / ( t )  

where 

r/(t) = ql/24 H (1 - q"), q = e  2i~ 
1 

3. IS ING M O D E L  CLOSE TO T c 

In this section we study the Ising model in the scaling (or continuous 
field-theoretic) regime at a temperature slightly off criticality. The 
correlation length ~ is finite and ~.-~= [ml, where m is proportional to 
a-~(T/Tc - 1), with a standing for a typical lattice spacing. The model is 
described by a path integral in terms of Grassmanian variables, 

= [ D e t ( - A  +m2)] 1/2 (3.1) 

There are several qualifications here. First, we have to figure out the boun- 
dary conditions on the torus. We assume that both ~0 and q} are either 
periodic or antiperiodic and sum over the four contributions. Second, in a 
discrete version on a finite domain the sign of m ~  (T/T~,-1)  matters, as 
the path integral is polynomial in m. We perform the calculation with m 
positive, say, and then analytically continue through m = 0. As we shall see, 
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a simple term is sensitive to the sign of m and one has to distinguish the 
disordered phase T>T~. from the ordered one T<T,. .  With this 
understanding we obtain 

i.e., 

ZIsing(m) = D,/2,t/2(rn) + Do,1/2(m) + D1/2,o(m) + Do,o(m) (3.2) 

Zlsing(m) = exp x Im "c {@2 - 12 In [;rc e x p ( -  7) %---~---) J / I r a  T'~ 1/27 

2 0 dX(1-2) , ,=~ [ ( n -  1/2)2+2t2] 3/2 

+ e x p - ~  [ m r  - t + t 2 1 n 4 - ~  d2(1 - 2 )  

, , )} 
X [(n-- 1/2)2+)d2] 3/2 (n2+-2t2) 3/2 

n = l  

x ~ F] {1 + exp[2i~zn Re r - 2rr Im r(n 2 + t:) ~/2] }] (3.3) 
+ 11 

This is the result obtained more than 15 years ago by Ferdinand and 
Fisher, (3) except perhaps for minor discrepancies due to misprints. EThe 
term proportional to t 2 in the first exponential has been omitted in formula 
(3.36) of this paper, although it comes out simply from (3.30) and (3.32).] 
Absolute value signs have been suppressed, since products in n from - o o  
to + oo imply reality of the corresponding expressions. In the limit rn = 0 
we recover the expected results with Doo(0 ) vanishing, 

/ I s i n g ( O )  = D ~/2,,/2( 0 ) + Do,,/2(O ) + 0 1 / 2 , o ( 0  ) 

D~/2,~/2(0)= q ~/4s ~I ( l + q  "+1/2) 2 
n=O 

(3.4) 
Do j/2(0) = q-i/48 f i  (1--q~+'/2) 

2 

n = 0  

D1/2,o(0)=2 q-1/48+1/16 (1  + q n )  

822/'48/3-4-7 
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Our normalization differs here by an overall factor 1/2 (put in by hand) 
from the corresponding expressions given in Ref. 5. In (3.3) the terms sen- 
sitive to the change t~-~ - t  (m ~ - m )  are in the exponential prefactor of 
D~/2,o and Doo and in their factor corresponding to n = 0  written as 
1 +exp( -2rc  Im zt). Combining these factors yield exp(rc Im zt)+_ 
exp(-7r Im zt). 

The relativistic massive spectrum of states occurring in (3.3) is quite 
natural, given that the corresponding boundary conditions are very much 
as in the scalar case. Furthermore, not only does the central charge become 
scale dependent, but also the "dimensions" of the various operators. For 
instance, the spin operator splits into two operators which were 
indistinguishable at T,.: the spin operator proper and the dual disorder 
operator related by t * - , - t  with scale-dependent "dimensions." The 
occurrence of a t21n[(Imz)/A] ~/2 term in the "central charge" is once 
again a manifestation of the renormalization properties of the operator ~b 
of dimension one. In a mass perturbation theory an ultraviolet-divergent 
subtraction is required to second-order, related to the appearance of a 
m 2 in L/a term in the specific heat, as indicated below. The calculation 
using ~-function regularization has by-passed the problem and provided a 
nonperturbative finite answer. 

The partition function is a combination of two modular invariants, 
namely D1/2.1/2(m) +Do, l/2(rn) + Om/2,o(m ) and Doo(m). The latter is of 
course the inverse of the partition function of a scalar field and appears 
here as a combination of the spin and disorder operator sectors. It is 
instructive to expand the free energy In Z(m) in powers of m. We shall use 
the notations Dij instead of Du(0 ) for the three quantities given in (3.4) and 
Z~/2 for Z~si~g(0). Furthermore, Z~ will stand for the critical scalar partition 
function defined in (2.25), 

Z I =  
(Im z) 1/2 tt(z) ft(r) 

Then, expanding (3.3) to order m 2, one finds after some calculations 

Zlsing(m) l mA 1/2 + ~m2Ag n ZI xf~Ae'~) 2~DulnD0.1 
Z 1/2 = -~ Z ~ / 2  Zl/2 

+ O[(mAl/2) 3 ] (3.5) 

where the sum runs over the three combinations of indices (I/2, 1/2), 
(0, 1/2), and (1/2, 0) and can be thought of as an entropic contribution of 
the various spin structures. Equivalently, 
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mA 1/2 
In Zising(m ) = In Z1/2 -} ZI ZI/2 

+O[(mA1/2) 3] 

1 ~D~j lnD~j  

2~ Zl/2 2(2121/2)21 
(3.6) 

a rather neat expression involving both the fermionic (Z1/2) as well as 
bosonic (Z1) partition functions. 

One notes the appearance of a term linear in m corresponding to a 
nonzero expectation value of the energy operator in the spin sector (and 
not the "vacuum" one). We shall discuss below the details of this 
mechanism. The arbitrary length scale involved in the term m21n 
appears as an additive renormalization of the specific heat. If we return to 
the original starting point [Eq. (2.3)], we see that the product over 
energies is dimensional. We could have a priori decided to measure lengths 
in units of x /A and energies in units A- l ,  which would amount to com- 
puting, instead of (2.3), the dimensionless quantity 1V[n~n2 (AE,~,2) -~ and 

would result in the effective disappearance of the factor x /A inside the 
logarithms of (3.6). 

The existence of odd as well as even terms in the expansion (3.6) 
shows that in general the maximum of the specific heat is not at m = 0 
( T =  T,), but depends on the modular ratio as observed in Ref. 3. Finally, 
let us note that in spite of the original disymmetric appearance, the expan- 
sion (3.6) is a testimony to modular invariance, involving only such quan- 
tities as Z1, ZI/2, m, A ..... 

4. PERTURBATION THEORY 

1. Assuming the geometry depicted on Fig. la, we write the partition 
function of a continuous field-theoretic model as 

Z =  Tr e x p ( - I m  co 2 H +  iP Re 02) (4.1) 

where H and P are the commuting Hamiltonian and momentum operators. 
For definiteness we use a coordinate system in the u plane where coi is real 
(Fig. 1). The trace is of course independent of the choice of basis in which 
we have a realization of H and P. In any case we choose one in which P is 
diagonal. At criticality, H reduces to H0, 

(4.2) 
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l rn~ 2 

ReLo 2 

(u) 
a 

Fig .  1 

(x) 

b 

with L0 and/~o belonging to the commuting Virasoro algebras (6~ generated 
by the energy-momentum operator and C is the central charge. The states 
form a (decomposable) representation of these algebras. We shall assume 
the vicinity of the critical theory described by a modified Hamiltonian 

H = H o +  V =  H o -  ~ G f o  l du~ ~(.~, o) (4.3) 

with a sum over a set of primary local real fields of conformal weights 
(h, h = h). To simplify notations we limit ourselves here to a single field and 
suppress the summation sign. This means that the coupling constant G is of 
dimension 2 -  2h in units of [-length]-~. 

To start with, we would like to understand the "running" central 
charge (a scale-dependent quantity), the analog of the phenomenon found 
in the previous section. For that purpose instead of computing the full 
trace in (4.1), we limit ourselves first to the unperturbed vacuum con- 
tribution. We denote by 10) this translationally invariant state and write 

Zo = (01 e x p ( - I m  o) 2 H +  iP Re co2) 10) 

~ImTC6 G~ '~2o  fo ~' =exp  (0] J exp ~-~ du 2 dulqo(Ul,Uz) lO) (4.4) 

where the "time" ordering operator Y acts on the variable u2. 
It is then useful to return to the punctured plane (Fig. lb)  using the 

map 

2i~ 
x = exp - -  u, u = ul + iu2 (4.5) 

(D r 
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Thus, 

d2u= \2~J x2 

and from the conformal transformation properties of q0 

((D 1N~ 2-2h  d2x 
d2u CPtorus(U , t~) = \~ ' -~ j  (X .~) l_ ,  ' ~0plane(X , .~) (4.6) 

The integral becomes one in an annulus from 
ordering is radial. The value of p is 

I x l = p  to I x j = l  and 

It is now useful to define a dimensionless coupling 

g = G(Im~ I/2~) 2 - 2h (4.8) 

The case treated in Section 3 corresponded to the Ising model with G = m, 
h = I/2 and g was denoted t. On the other hand, we could consider the case 
of a magnetic perturbation again in the Ising model with G ~  H (the 
magnetic field), ~0~spin  field of dimension h = l / 1 6 ,  in which case 
g= H(fco~l/2rc) ~5/8. Relevant perturbations will be such that 2 - 2 h  > 0, in 
which case for fixed G, g grows as L~o~L ~ ~ and perturbation theory is 
dangerous unless G also goes to zero to maintain a finite (but small) g. On 
the other hand, this is also the most interesting one, as it may transfer one 
from a universal class to another. Two strategies are possible: One can 
study models such that one has an operator  ~0 with h close to unity and 
develop renormalization group equations by expansion in (1 - h ) .  This is a 
case studied by Zamalodchikov. (2) Alternatively, one can look at a 
straightforward expansion in g. This is what will be at tempted here for 
relevant operators. For  2h a fractional number between 0 and 1, as the 
infrared cutoff is realized by the choice of boundary conditions and the 
ultraviolet behavior under control, no singularities appears in the g-expan- 
sion of Zo written as 

Zo(g, Im r) = exp - -  

Im rC  
= exp 6 

g fj d2x ~ Im rC  ( 0 1 J  exp ~-~ (xs  cp(x, 2) t0) 

_ _  ( g )N fp d2xl...dZXN 
A 0 ~ <[-:ell"" ~< IX2Ul ~<1 (Xl '~ l  "''XN 2u)l-h 

x (0[ ~p(x,, 2~) . - .  ~P(XN, 2N) 10) (4.9) 

p = exp - 2~ Im r (4.7) 
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If H has a ground state for g r 0, we presume that In Z 0 will behave like 
Im ~ in the limit Im z ~ or. This justifies the definition 

In Zo(g, Im "c) In Zo(g, p) C(g) = lira = lira (4.10) 
I . . . .  27~ Im r p~o ln(I/p) 

with 

C(g) = C/12 + g2C 2 -}- g4C 4 q- ... (4.11) 

(assuming that odd correlation functions vanish) and 

1 lim - - 1  ~ d2xl ... d2x2N 
C2N--(2rr)2NP~~ In(1/P) Jp~->,l ..... 2~1~ (XI& ' ' '  X2N&N) ~-~' 

(4.12) 

The necessary ingredient in the computation is provided by a knowledge of 
the critical correlation functions of primary fields. Those are in principle 
determined by the differential equations derived by Belavin etal. (6) and 
elaborated by Dotsenko and Fateev. (7) The overall normalization will be 
provided by the two-point function written as 

(OI (49(X1, "~1) q)(X2, "~2)[0)  = l/IX 1 --X214h (4.13) 

which then gives an absolute meaning to the parameter g. The one-point 
expectation value is assumed to vanish (for h =r 0 in the infinite plane). The 
value of C2 is then easily extracted. We have 

1 ff d2xl I' dZx2 1 
Ixll z-2h .< Ix212-2h Ix,-x214h 

= fl dx2 f ;  2 dxl 
[x2L~+ 2h Ixll 1-2h 

- dO(1 xlei~ xle ,o~-2h 
Xf~n~-~ X2J (1 X 2 /  

IX2[ l+2h [Xl]l--ahn=o\X2] [ ~.-"~2"-~"] 
l [F_(..(Flq-2h!TSf;dX2[l__ 

= ~ 2 n + 2 h  L n! F(2h) J x2 kX2/ _l n=O 
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Taking the limit p ~ 0 in the above expression yields 

1 [ n+2htl2 
C2(h) = ~o 2n + 2h [_ n! F(2h) J 

l f2 d--~ xhF(2h, 2h;1; x) 
2 (4.14) 

The above series is of course meaningful provided 

0 < 2 h < l  

as stated above. An example of the limiting case 2h -~ 1 corresponds to the 
thermal operator in the Ising case treated in Section 3. The behavior of 
In Z o is no longer linear in Im v and a logarithmic divergence occurs in C2 
(see above). One could as well obtain (4.14) by a standard perturbation 
theory for the ground state of H o, the denominators 2n + 2h corresponding 
to the difference between the energy of excited states Ih + n, h + n )  coupled 
to 10) by the perturbation, and the numerator to the square modulus of 
matrix elements: 

C (1(/)1[) 2 I ( O l V I h + n , h + r l ) l  2 
C(g)=] -~+  ~ ~ 2 n + 2 h  + - . .  (4.15) 

Sum rules necessary to the evaluation of (4.15) are provided by transfor- 
mation of (4.13) and lead to calculations similar to the previous ones. 
Computation of the other terms requires a knowledge of multipoint 
correlation functions, which depend on the model. 

2. Rather than trying to pursue the matter in general, we shall con- 
centrate first on the thermal perturbation in the Ising case. Comparison 
with the exact results of the previous section will provide a check of the 
method. Here ~0 is the energy operator d ~ with dimensions (1/2, 1/2). Odd 
correlation functions vanish, and even ones are given by the simple formula 
derived from Wick's theorem for the free field Fermi theory, 

(01 o~(Xl, "~1)'" "~(X2N, X2N) I 0 ) ~- P f  (4.16) 

Consider first the fourth-order term in (4.11). One has 

(0, d ~ ( 1 ) d ~ ( 4 ) [ 0 ) X l ; 3  4 1 l l 2  . . . . .  ~ - - -  (4.17) 
X13X24 X14X23 
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and the four-point connected correlation function reads 

(01 ox~(1) . .  �9 ox~ 

1 1 1 
- -  + C . C .  

X 12 X34 9~ 14-~23 X12X34-~ 13-~24 X 13 X242~ 14)C23 

A term like (XI2X34)C14X23) 1 can be rewritten 

[X2)~3X4.,~4(1 __ Xl/X2)([ __ X3/X4)(I __ 3~ 1/~4)( 1 __ )~2/,~3) ] - I  

The  x2)c 3 in this expression produces a phase factor exp(-i023 ) which will 
not be compensated by the expansion of the other factors, leading to a 
vanishing contribution after the angular integration in (4.12). We are thus 
left with 

(2@f ~ d2xl""d2x4 
~< ]xl] .-- ~< 1~:41 ~< i (XlX 1 "'" X4-~4) 1/2 

X IX3"~3X4)~4 ( 1  --  X 1~(1  -- ~42)( ' - ~1 ~ (  1 - ~-~2~ - I "qt- C 'C" y3]~,  X 4 / \  X3/_J 

r'ldx4fp'c4dx3ff3dx2ff:2dx1 
=  -74 

(2~-)'~ I (  1 xlei~ / \  x2et~ / 

- - -  e i~ 1 -- - -  e iOa3 q- e . G .  
X 4 X 3 

X~.]p X 2 ~3dx2fp dxln.~o\X3X4, ] 

When p goes to zero we replace all the lower limits of integration by 0, 
except for the first one. We get then 

i ' f2 - 2  (2n+ 1) 2 (4n + 2) X---~- n=0 

and thus 

C4(1/2) = -~(3)(1 - 2 --3) (4.18) 

In contrast to C2(1/2), this is finite, and agrees with (3.3). The following 
C2N(1/2) can be calculated exactly in the same way. The only terms in the 



2D Field Theories close to Crit icality 467 

connected 2N correlation function (4.16) that lead to a nonvanishing result 
after angular integration are of the form (xm.. "XN~N'2,j~'''~Nj,) -~ where 
(il.''iu) and (Ji'''Ju) are two permurations of ( 1 - . .N)  with i~r 
1 ~< n ~< N. Their contribution is 

X2N+I / p dXN''" dXl ~ X1 " XN ~2n . . . .  

i.e., in the limit p ~ 0 

1 fl dX2N 
n=o (2n + 1)2 (4n + 2) 2.. [2(N-1)n+N-1]2(2Nn+N) X2N 

We thus get 

C2N(1/2) = (-- 1) u-~ ( 2 N -  2)! ~ ( (2N--  1)(1 - 2 ' -2N) 

or  

F(N- 1/2) C2N(1/2)=22N--'(--1)NFv--1/2) N ! t  ~(2N-- 1)(1 --2 '-2N) (4.19) 

This agrees with the expansion in powers of t of the varying "central 
charge" deduced from (3.3), 

C(t)-24 21n zre-~ 

F(N- 1/2) ~ ( 2 N -  1)(1 - 2 1  --2N) t2N (4.20) + ~ 22u-1(--1)NF(_l/2)N ! 
N=2 

3. We turn now to the magnetic perturbation in the Ising model, (p 
being the spin operator a with dimensions (1/16, 1/16). Correlation 
functions are given by (8) 

(0]  O'(Xl, 2~1)"" "(7(X2N , "~2N)10) 2 

= E I]  Ixol ~"'/z (4.21) 
ei= +1 l~i<j<~2N 

In this case it is the square of the correlation function that has a 
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simple form, and taking the square root leads to more complicated 
calculations than above. We shall consider only N =  2. We can write 

(01 ~r(1).--a(4)IO5 

1 1 
( X 1 4 X 2 3 b t )  1/8 (2(14.~23/g) 1/8 { If+(u)12 + ]f_(u)l 2 } (4.22) 

where 

U ~ _ _ - -  XI2X43 

X13X42 

Both functions f+(u) satisfy the differential equation 

u ( 1 - u ) f ' + ( � 8 9  (4.23) 

which enables one to expand them in power of u in the case o f f +  and of 
u ~/2 in the case o f f _ ,  ]ul <~ 1: 

f+(u) I1+(12u)1/~] '/e = - = A m U'~' 
m ~ O  

(4.24) [ '-  (12")'/2] ~/2 f (u)=  = - - ~  Am+ /2u '~'+1/2 
m = O  

with 

A.~- 
F(1/2) F ( x +  1/4) F ( x -  1/4) 

F(1/4) F ( -  1/4) F(x+ 1) F(x+ 1/2) 

One can then develop (4.22) for radialy ordered variables. After long but 
straightforward algebra and repeated use of the binomial formula, one gets 
a sum over 14 indices, 

(0t cr(1)-., a(4)L0) 

k f i  F(ns+ 1 / 8 ) f i  F(n,+ 1 / 8 - m ) ~ I  F(ns+m-1/18)Am 
,=, F(1/8)n,[ i=3 F - - - ~ - - m S n T  "r i=s F(m- I /8 )n i !  I " "  n6,m, 

;~1 " " " f i 6 ,  m ~ 0 

\x2J \ x 3 /  kX4/ 

x C.C. + same sum with rn(r~) replaced by m + 1/2 (r~ + 1/2) (4.25) 
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where complex conjugation means also use of r~ indices instead of n. 
Although (4.25) was obtained using the expansion (4.24), legitimate for 
lu] ~< 1 only, it now defines a series that is convergent for radially ordered 
variables, and we expect this expression to be true whatever the value of 
]ul. To get the connected part, one must subtract 

(01 a (1)o(2) IO)(OI  o-(3)0-(4)10) 

which can be expanded as 

elp2=oi=l F(1/8)Pi] \ x 2 /  \ x4J  

and two similar terms deduced by permutation, 

(X3X4) 1/8 ~ I~ l~(Pi-~ l /g ) (Xl~  /~ (X2~ P2 x C.C. (4.27) 
Ple2=oi=1 F(1/8)Pi! \ x 3 /  \ x 4 /  

x C.C. (4.28) 
ele2=o/=1 F(1 /8)Pi !  \ x 3 /  \ x 4 /  

We now perform the integration (4.12). For  a term like 

1 ( d2Xl . . .  d2X2N 

(2~) 2N Jp ~lXll-.-~< I-V2NI ~< 1 (XI-~I"" "X2NX2N) 15/16 

X (X2X4) l/8(Xl~nl+n3+n5(x2~nl+n2+n5+lz6+m(x3~ nl+n4+n6 
- -  - -  xC.C. 

\X2,] \X3J \X4,] 

the angular part selects terms where nz + n3 + ns =~ql + ~3 +~5 and similar 
relations for the two other exponents, with the leading behavior as p --* 0 

1 1 1 (1 dx 4 

1/8 + 2(n~ + n3 + ns) 2(nl + n2 + ns + n6 + m) l/8 + 2(nl + n4 + n6) Jp x4 

The case where the second denominator vanishes is excluded by the sub- 
traction of (4.26). Integration of (4.27) or (4.28) is similar to the calculation 
in (4.13), (4.14). Collecting results, we get finally 
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( ~1 F(ni + 1/8) 

~' r(1/8)n,, 
n l  " �9 n 6 , m ,  i " 

n l , �9 �9 g t 6 , m  ~ 0 

t~l + n3 + 115 = C . C .  

n l  + n 2 + n 5  + n 6  + m = C . C . , / - O  

nl  + n4 + n6 = C . C .  

x(I r(n,+l/8-,.) r(,,i+m-1/8) ) ,=5I] AmXC'C" 
1 1 

x 1/8+2(nl+n3+ns)2(nl+n2+ns+n6+ m) 

x 1/8 + 2(n 1 + n 4 4- n 6 

+ same sum with m (rh) ~ m + 1/2 (rh + 1/2) 

,...s=o F(1/8) n,! " "J 

1 1 1 

x 1/8 +2n7 1/8 +2n8 1 /4+2(n  7+ns)  

1 1 "x 

+ (1/8 + 2n7) 2 1/4 + 2(n 7 + ns) ) (4.29) 

In contrast to C4(1/2), this expression is rather heavy, and does not 
seem to generalize simply to higher orders. In the strip limit (T--, oo) it is 
interesting to consider the first cumulants of the magnetization M for a 
discrete Ising model mode of LT= A spins at criticality, 

The ratio 

m2(L)= lira A - I ( M  2) 
T ~ o o  

m4(L)= lira A-IE(M4) -  3{M2) 2] 
T - +  oo 

1 l i m  m4(L) 
R = --~ ELmz(L)] 2 

(4.30) 

(4.31) 

is universal and has been evaluated numerically, 

R = 2.46044 + 0.00002 (4.32) 
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using transfer matrix methods (9) or a Monte Carlo estimation (I~ of the 
integral (4.12). We get here its analytic form 

C4(1/16) 
R- -  ~[C2(1/16)32 (4.33) 

C2 is easily obtained numerically, C2 -- 8.009487. 
The calculation of C4 is more difficult, since the sum involves 11 

indices. Fortunately, it converges quite rapidly. (For all ni, m on the same 
scale n, Stirling's formula F ( n ) ~  n'-1/2e-n gives a behavior ~r/-23/4) and 
the first few terms provide a good estimation. Computation for hi, 
m E [0, 3] gives C 4 -~ -495.88 + 0.01. Thus, 

R = 2.46048 + 0.00005 (4.34) 

in agreement with (4.32). 
Note that the zeroth-order term in (4.14) is 8 and 0 + 1 6 -  512 = -496  

in (4.29), leading to an estimate R -  - 3 1 / 4 z =  --2.467 already very close 
to (4.34), 

4. One can also perform similar calculations for the varying "dimen- 
sions." For  the spin operator in the Tsing case one has, for instance, 

Z1/16(g , Im , )  = (al  exp(- - Im (0 2 H +  iP Re (02) [a)  

= exp 12 
N=0 

fp d2xL ".. d2xN dO • 
Jxld, ~lxNl<.l (X121 "''XN2JV) ~-h2~r 

X (01 a(O, O) (D(XI, "~1)"" ~l)(XN, 2-N) 

x a(exp iO, exp -iO) I0) (4.35) 

which defines 

with 

D(g) = lim In Z1/16(g , p )  (4.36) 
p~o In(l /p)  

DCg)= - 1 / 1 2 +  gD, + gZD 2 + ... (4.37) 

For the thermal perturbation the first term is nonzero. We must compute 

Z f d2x2 dO3 
27r p.r (x22,2) l/2 2~z (oe or(o, o)~ (xr 2-2) a(e '~ e io3) (0) 
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This integral requires knowledge of the three-point function, which is easily 
deduced from (4.13), (4.21): 

(01 O'(Xl)C1) e (X23~2) 0"(X3-~3) 10} --  1~-- 1/2~--- 1/2.~3/8 - -  2;~ 12 ~23 ~31 x C . C .  (4.38) 

We are thus left with 

Z fO d2x2 dO3 
47~ -G < kx2[ ~ l (x2)c2) 1/2 2Tg 

(X2.~2) --1/2 (e,O3 _ x2 ) -1/2 (e -i03 _ x2)  - i / 2  

whose dominant behavior is simply 1/2 in(I/p). Thus, 

D~(1/2) = 1/2 (4.39) 

in agreement with (3.3). Note that a similar calculation of the "varying 
dimension" of the energy (identity) would give zero, since ( ~ e e ) ( { I ~  I ) )  
vanishes. As an example of a new result, we consider the magnetic pertur- 
bation. Then D1(1/16)=0 and one obtains D 2 using the correlation 
function (4.25) 

~n2m=0 F ( 1 / 8 ) n l !  F ( 1 / 8 ) n 2 !  - m 

1 • 
2(n 1 + m) - 1/8 

+ same sum with m -~ m + 1/2 (4.40) 

We thus predict the ratio of the shift in g2 for the ground-state and the first 
excited-state energies 

c2(1/16) 
r = = - 1.03926 (4.41) 

D2(1/16) 

where C2, D2 have been computed numerically using the above expressions 
[note that the zeroth-order approximation to the sums (4.14) and (4.40) 
already gives r ~ - - 1 ] .  Transfer matrix estimations of this quantity, 
obtained by a method similar to the one used in Ref. 9, are given in 
Table 1. Their extrapolation agrees satisfactorily with the value given by 
(4.41). 

5. All these calculations are by no means restricted to the Ising case. 
As a final example, we consider the three-state Potts model with a thermal 
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Table I. Estimates of the Ratio 
r [Eq. (4.41)]  a 

L r 

1 - 1 
2 -- 1.027820 
3 - 1.033255 
4 -1.035283 
5 - 1.036376 
6 -1.037065 
7 - 1.037530 
8 - 1.037858 
9 - 1.038099 

!0 - 1.038232 
Extrapolated value -1.0392 • 

These values have been obtained by considering a dis- 
crete Ising model on the square lattice with a cylinder 
geometry (L being evaluated in lattice spacing units). We 
have computed numerically the shift in H 2 of the ground- 
state and first excited-state energies in the transfer matrix 
spectrum. 

p e r t u r b a t i o n  g~(2/5, 2/5).  T h e n  C2 is g iven  by (4.14) and  one  can  o b t a i n  C4 

us ing  the  k n o w n  f o u r - p o i n t  ene rgy  c o r r e l a t i o n  f u n c t i o n  (11) 

(OI g ( 1 )  g ( 2 )  g ( 3 )  g ( 4 ) )  

~- (XI4X23U) -4/5 F(-8/15, - l / 5 ;  - 2 / 5 ;  u) x C.C.  

F 2 ( - 2 / 5 )  F ( 6 / 5 )  F ( 1 3 / 5 )  (X14X23U)3/5 (X13X24)_7/5 
v(-8/5) v ( -  1/5) v~(12/5) 

x F(13 /5 ,  6/5; 12/5; u) • C.C.  (4.42) 

where  F is the  G a u s s  series 

F(a, b; c; u)= ~ Am(a, b; c) u m (4.43a) 
m~O 

with  

F(a + m) F(b + m) F(c) 
A,,,(a, b; c) = (4.43b) 

r(a) F(b) F(c + m) m! 

T h e  c a l c u l a t i o n  is s imi la r  to the  p r e c e d i n g  ones  and  we o n l y  q u o t e  the 

resul t  here:  
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c.  = Z r(4/5) n,! 
nl  ". - n6 ,m,  i 

f i t  "�9 " fi6, rfi = 0 
nl + n 3 + n 5 = C . C .  

n l + n 2 + n 5 + n 6 W m = C . C . ~ O  
nl  + n4q-  n 6 = C . C . .  

x ~ F(ni+4/5--m) l ~ ( F l i - ~ m - - 4 / 5 )  A ( m l  ) ) 

i = 5  

( , 1 
x ~4/5+2(nl+n3+ns) 2 (n l+n2+ns+n6+m)  

x 4/5 + 2(n 1 + n 4 -t-/'/6) 

r2(-2/5) n6/5) F(13/5) 
r ( -  8/51 r ( -  1/51 r2(12/51 

., .... 8.~. , F(-3 /5)n , !  , = 3  F ( - m - 3 / 5 ) n , !  
fit " �9 n 8 , m  ~ 0 

n l + n 3 + n 5 + n T = C . C .  
nl  + n 2 + n 5  + n 6  + n 7 + n s + m ~ C . C .  

n l  + n 4 + n 6 + n s = C . C .  

,=5 F(m+ 3/5)ni! /:=~7 F(7/5)n~! 

x 4/5+2(nl+n3+ns+n7) 

1 
X 

14/5 + 2(nl +n2+ns+n6+n7+na+m ) 

1 i) 
x 4/5 + 2 ( n l  +n4+n6+n8 

 (09 ) - Y~ r(4/5) n,! x C.C. 
n g , n l 0  ~ 0 i 

1 1 1 

x 4/5 + 2n 9 4/5 + 2nlo 8/5 + 2(n 9 + nlo ) 

) + (4/5 + 2n9) 2 8/5 + 2(n 9 + nloi (4.44) 

where A(~ ) and A~ ) are the coefficients (4.43b) in the expansions of the two 
Gauss series (4.43a). 
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